Sample Paper Of Mathematics For CBSE Board

General Instruction:-

- 1) All questions are compulsory.
- **2)** The question paper consists of 30 questions divided into three section A comprises of 10 questions of one mark each, section B comprises of 15 questions of four marks each and section C comprises of 05 questions of six marks each.
- **3)** All questions in section A are to be answered in one word, one sentence or as per the exact requirement of the question.

Section - A

Q 1. What is the principal value of $\cos^{(-1)}$ [($\cos^{(0)}$ [$2\pi/3$])+] $\sin^{(-1)}$ [($\sin^{(0)}$ ((($2\pi/3$)?[1]
Q 2. For what value of x, the following matrix is singular ? $[(5-x&x+1@2&4)]$. [1]
Q 3. Give an example of a relation which is reflexive and transitive but not Symmetric.[1]
Q 4. If $x = a \cos t$ and $y = a \sin t$. Find dy/dx. [1]
Q 5. If f: $R \rightarrow R$ is defined by $f(x) = 3x + 2$, define fof $(x) \cdot v$ [1]
Q 6. If $ \blacksquare (x \& x @ 1 \& x) = \blacksquare (3 \& 4 @ 1 \& 2) $, write the positive value of x. [1]
Q 7. The radius of a circle is increasing at the rate of 0.7 cm/s. what is the rate of increasing of its
circumference? [1]
Q 8. Find the value of x for which is a unit vector. [1]
Q 9. Show that the points (2,3,4), (-1,-2,1),(5,8,7) are collinear. [1]
Q 10. Evaluate : \(\int_1^(\sqrt{3}) \) dx/(1+x^2). [1]
<u>Section - B</u>
0.11 Heing properties of determinants, prove that $I = I ho 2 ho$
Q 11. Using properties of determinants, prove that ■(-bc&b^2+bc&c^2+bc@a^2+ac&-
ac&c^2+ac@a^2+ab&b^2+ab&-ab) = (ab+bc+ca)^3. [4]
Q 12. Prove the following : $[\cot] ^{-(-1)} [(\sqrt{1+\sin x}) + \sqrt{1-\sin x})] = x/2, x \in (0,\pi/4).$ [4]
Q 13. Differentiate [sin] ^(-1)@(2xv(1- x^2)) with respect to [cos] ^(-1)@((1- x^2)/(1+ x^2)).[4]
Q 14. Find the shortest distance between the lines, whose equations are [4]
(x-8)/3=(y+9)/(-16)=(10-z)/(-7) and $(x-5)/3=(58-2y)/(-16)=(z-5)/(-5)$.
Q 15. Find the value of a for which the function f defined as f (x) = { \blacksquare (asin (π (x+1),)/2,x ≤0@tan \blacksquare [x-
$sinx$ /x^3 ,x>0)- is continuous at x = 0. [4]
Q 16. Use Rolle's theorem to find the condition for the polynomial equation $f(x)=0$ to have a repeated
real root .Hence or otherwise prove that
1+ x/1!+x^2/2!+x^3/3!+···+x^n/n!=0,can not have repeated root. [4]
Q 17. Find the mean number of heads in three tosses of a fair coin. [4]
Q 18. Evaluate $\int_0^1 (3x^2+2x+1) dx$. as the limit of the sum. [4]
Q 19. Solve the differential equation : $[\cos]^{-2x} dy/dx+y=tan]^{-1/2}x$. [4]
Q 20 . For what $\lambda \in R$ the system of equations [4]

2x - y + 3 = 0

 $X + \lambda y + 7 = 0$

3x + 2y - 2 = 0

Is consistent? solve the equations for that value of λ .

Q 21. Evaluate the equation

$$\lim_{\mathbf{T}} (x \to 0)^{\text{fig}} \left[(\sqrt[3]{(1+x^2)-1})/(x^2) \right]$$
.

[4]

Q 22. Find the domain and range of $f(x)=(x^2-3x+2)/x^2+x-6$.

[4]

Q 24. Let f(x)=1+x , 0<=x<=2

[4]

3-x , 2<x<=3.

Determine $f\{f(x)\}$ and hence find the points of discontinuity and non differentiability. Also, draw the graph of $f\{f(x)\}$ at [0,3].

Q 25. Find the equation of the tangent line to the curve $y = x^2 - 2x + 7$ is parallel to the line 2x - y + 9 = 0.

Section - C

Q 26. Solve the differential equation: (tan-1y - x)dy = (1 + y2) dx. [5]

Q 27. Consider $f: R \rightarrow [-5, \infty)$ given by f(x) = 9x2+6x-5. Show that f is Invertible. [5] Find the inverse of f.

Q 28. Use product $[\blacksquare(1\&-1\&2@0\&2\&-3@3\&-2\&4)][\blacksquare(-2\&0\&1@9\&2\&-3@6&1\&-2)]$ to solve the system of equations :

$$x-y+2z=1$$
, $2y-3z=1$ and $3x-2y+4z=2$.

[5]

Q 29. Every gram of wheat provides 0.1 g of proteins and 0.25 g of carbohydrates. The corresponding values for rice are 0.05g and 0.5 g respectively. Wheat costs Rs. 4 per kg and rice Rs. 6 per kg. The minimum daily requirements of proteins and carbohydrates for an average child are 5 g and 200 g respectively. In what qualities should wheat and rice in the daily diet to provide minimum daily requirements of proteins and carbohydrates at minimum cost. Form a L.P.P. and solve it graphically. **[5]**

Q 30. A window has the shape of a rectangle surmounted by an equilateral triangle. If the perimeter of the window is 12 m, find the dimensions of the rectangle that will produce the largest area of the window. [5]