Video Course / Live Tutor
 For Board Exams

From early adopters of new technology in field of Under class 10th education and 10 to 12th Education. Plutus Academy has helped large number of students during their career. May it be for UPSC and Banking exams or Online tuition for class 6 to 12th.
Video courses for class 6 to 12th constitutes Syllabus wise topics with about 300-500 Video lectures for each class, Sample Papers ,
Quiz, Sample Papers with solutions, Previous year question papers of board exam (applicable for class 10th and 12th)
Teaching of subjects according to Marking scheme and Blue print of CBSE.
We offer these courses in two variants

1. Online
2. Pen drive

Online module is accessible through INTERNET where as Pen-drive module is accessible without Internet. In both these modules you also get to access doubt clearing classes conducted Online on every week end. Students also get a panel to ask question and eminent faculties reply them through that.

What

you get?

Available Courses

To Purchase Visit : http://plutusacademy.com/online-tutor/
For Any Query : Coll us at +9718552212, 0120-430-89-58 https://studymaterial.oureducation.in/ http://onlinekhanmarket.com/
Email us : info@plutusacademy.com

SAMPLE QUESTION PAPER
 MATHEMATICS (041)
 CLASS XII - 2017-18

Time allowed: 3 hours
Maximum Marks: 100

General Instructions:

(i) All questions are compulsory.
(ii) This question paper contains 29 questions.
(iii) Question 1-4 in Section \boldsymbol{A} are very short-answer type questions carrying 1 mark each.
(iv) Questions 5-12 in Section B are short-answertype questions carrying 2 marks each.
(v) Questions 13-23 in Section C are long-answer-I type questions carrying 4 marks each.
(vi) Questions 24-29 in Section D are long-answer-II type questions carrying 6 marks each.

	Questions 1 to $\frac{\text { Section } A}{4 \text { carry } 1 \text { mark each. }}$
1.	Let $A=\{1,2,3,4\}$. Let R be the equivalence relation on $A \times A$ defined by $(a, b) R(c, d)$ iff $a+d=b+c$. Find the equivalence class $[(1,3)]$.
2.	If $A=\left[a_{i j}\right]$ is a matrix of order 2×2, such that $\|A\|=-15$ and $C_{i j}$ represents the cofactor of $a_{i j}$, then find $a_{21} c_{21}+a_{22} c_{22}$
3.	Give an example of vectors \vec{a} and \vec{b} such that $\|\vec{a}\|=\|\vec{b}\|$ but $\vec{a} \neq \vec{b}$.
4.	Determine whether the binary operation * on the set \mathbf{N} of natural numbers defined by $a * b=2^{a b}$ is associative or not.
	Section B Questions 5 to 12 carry 2 marks each
5.	If $4 \sin ^{-1} x+\cos ^{-1} x=\pi$, then find the value of x.
6.	Find the inverse of the matrix $\left[\begin{array}{cc}-3 & 2 \\ 5 & -3\end{array}\right]$. Hence, find the matrix P satisfying the matrix equation $P\left[\begin{array}{cc}-3 & 2 \\ 5 & -3\end{array}\right]=\left[\begin{array}{cc}1 & 2 \\ 2 & -1\end{array}\right]$.

7.	Prove that if $\frac{1}{2} \leq x \leq 1$ then $\cos ^{-1} x+\cos ^{-1}\left[\frac{x}{2}+\frac{\sqrt{3-3 x^{2}}}{2}\right]=\frac{\pi}{3}$
8.	Find the approximate change in the value of $\frac{1}{x^{2}}$, when x changes from $x=2$ to $x=2.002$
9.	Find $\int e^{x} \frac{\sqrt{1+\sin 2 x}}{1+\cos 2 x} d x$
10.	Verify that $a x^{2}+b y^{2}=1$ is a solution of the differential equation $x\left(y y_{2}+y_{1}^{2}\right)=y y_{1}$
11.	Find the Projection (vector) of $2 \hat{i}-\hat{j}+\hat{k}$ on $\hat{i}-2 \hat{j}+\hat{k}$.
12.	If A and B are two events such that $P(A)=0.4, P(B)=0.8$ and $P(B \mid A)=0.6$, then find $P(A \mid B)$.
	Section C Questions 13 to 23 carry 4 marks each.
13.	If $\Delta=\left\|\begin{array}{lll}1 & a & a \\ & & \end{array}\right\|$
14.	Find ' a ' and ' b ', if the function given by $f(x)=\left\{\begin{array}{c}a x^{2}+b, \text { if } x<1 \\ 2 x+1, \text { if } x \geq 1\end{array}\right.$ is differentiable at $x=1$ OR Determine the values of ' a ' and ' b ' such that the following function is continuous at $x=0$: $f(x)=\left\{\begin{array}{c} \frac{x+\sin x}{\sin (a+1) x}, \text { if }-\pi<x<0 \\ 2, \text { if } x=0 \\ 2 \frac{e^{\sin b x}-1}{b x}, \text { if } x>0 \end{array}\right.$

15.	If $y=\log \left(\sqrt{x}+\frac{1}{\sqrt{x}}\right)^{2}$, then prove that $x(x+1)^{2} y_{2}+(x+1)^{2} y_{1}=2$
16.	Find the equation(s) of the tangent(s) to the curve $y=\left(x^{3}-1\right)(x-2)$ at the points where the curve intersects the x-axis. OR Find the intervals in which the function $f(x)=-3 \log (1+x)+4 \log (2+x)-\frac{4}{2+x}$ is strictly increasing or strictly decreasing.
17.	A person wants to plant some trees in his community park. The local nursery has to perform this task. It charges the cost of planting trees by the following formula: $C(x)=x^{3}-45 x^{2}+600 x$, Where x is the number of trees and $\mathrm{C}(\mathrm{x})$ is the cost of planting x trees in rupees. The local authority has imposed a restriction that it can plant 10 to 20 trees in one community park for a fair distribution. For how many trees should the person place the order so that he has to spend the least amount? How much is the least amount? Use calculus to answer these questions. Which value is being exhibited by the person?
18.	Find $\int \frac{\sec x}{1+\operatorname{cosec} x} d x$
19.	Find the particular solution of the differential equation : $y e^{y} d x=\left(y^{3}+2 x e^{y}\right) d y, y(0)=1$ OR Show that $(x-y) d y=(x+2 y) d x$ is a homogenous differential equation. Also, find the general solution of the given differential equation.
20.	If $\vec{a}, \vec{b}, \vec{c}$ are three vectors such that $\vec{a}+\vec{b}+\vec{c}=\overrightarrow{0}$, then prove that $\vec{a} \times \vec{b}=\vec{b} \times \vec{c}=\vec{c} \times \vec{a}$, and hence show that $\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right]=0$.
21.	Find the equation of the line which intersects the lines $\frac{x+2}{1}=\frac{y-3}{2}=\frac{z+1}{4}$ and $\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}$ and passes through the point $(1,1,1)$.

22.	Bag I contains 1 white, 2 black and 3 red balls; Bag II contains 2 white, 1 black and 1 red balls; Bag III contains 4 white, 3 black and 2 red balls. A bag is chosen at random and two balls are drawn from it with replacement. They happen to be one white and one red. What is the probability that they came from Bag III.
23.	Four bad oranges are accidentally mixed with 16 good ones. Find the probability distribution of the number of bad oranges when two oranges are drawn at random from this lot. Find the mean and variance of the distribution.
	Section D Questions 24 to 29 carry 6 marks each.
24.	If the function $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $f(x)=2 x-3$ and $g: \mathbb{R} \rightarrow \mathbb{R}$ by $g(x)=x^{3}+5$, then find $f \circ g$ and show that $f \circ g$ is invertible. Also, find $(f \circ g)^{-1}$, hence find $(f \circ g)^{-1}(9)$. OR A binary operation $*$ is defined on the set \mathbb{R} of real numbers by $a * b=\left\{\begin{array}{c}a, \text { if } b=0 \\ \|a\|+b, \text { if } b \neq 0\end{array}\right.$. If at least one of a and b is 0 , then prove that $a * b=b * a$. Check whether * is commutative. Find the identity element for *, if it exists.
25.	If $A=\left[\begin{array}{ccc}3 & 2 & 1 \\ 4 & -1 & 2 \\ 7 & 3 & -3\end{array}\right]$, then find A^{-1} and hence solve the following system of equations: $3 x+4 y+7 z=14,2 x-y+3 z=4, x+2 y-3 z=0$ OR If $A=\left[\begin{array}{ccc}2 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & 2 & -1\end{array}\right]$, , find the inverse of A using elementary row transformations and hence solve the following matrix equation $X A=\left[\begin{array}{lll}1 & 0 & 1\end{array}\right]$.
26	Using integration, find the area in the first quadrant bounded by the curve $y=x\|x\|$, the circle $x^{2}+y^{2}=2$ and the y-axis

$\left.\begin{array}{|l|l|}\hline \text { 27. } & \text { Evaluate the following: } \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{x+\frac{\pi}{4}}{2-\cos 2 x} d x \\ \text { Evaluate } \int_{-2}^{2}\left(3 x^{2}-2 x+4\right) d x \text { as the limit of a sum. } \\ \hline \text { 28. } & \begin{array}{l}\text { Find the dıstance of pornt }-2 \hat{\imath}+3 \hat{\jmath}-4 \hat{k} \text { from the line } \\ \vec{r}=\hat{i}+2 \hat{j}-\hat{k}+\lambda(\hat{i}+3 \hat{j}-9 \hat{k}) \\ \text { measured parallel to the plane: } x-y+2 z-3=0 .\end{array} \\ \hline \text { A company produces two different products. One of them needs } 1 / 4 \text { of an hour of } \\ \text { assembly work per unit, } 1 / 8 \text { of an hour in quality control work and Rs1.2 in raw } \\ \text { materials. The other product requires } 1 / 3 \text { of an hour of assembly work per unit, } \\ 1 / 3 \text { of an hour in quality control work and Rs } 0.9 \text { in raw materials. Given the } \\ \text { current availability of staff in the company, each day there is at most a total of } 90 \\ \text { hours available for assembly and } 80 \text { hours for quality control. The first product } \\ \text { described has a market value (sale price) of Rs } 9 \text { per unit and the second product } \\ \text { described has a market value (sale price) of Rs } 8 \text { per unit. In addition, the } \\ \text { maximum amount of daily sales for the first product is estimated to be } 200 \text { units, } \\ \text { without there being a maximum limit of daily sales for the second product. } \\ \text { Formulate and solve graphically the LPP and find the maximum profit. }\end{array}\right\}$

